2 00 5 Ramanujan ’ s Most Singular Modulus

نویسنده

  • MARK B. VILLARINO
چکیده

We present a detailed computation of Ramanujan’s most famous singular modulus, k210, based on the Kronecker Limit Formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan ’ s Most Singular Modulus MARK B . VILLARINO

We present an elementary self-contained detailed computation of Ramanujan’s most famous singular modulus, k210, based on the Kronecker Limit Formula.

متن کامل

Arithmetic Properties of Overcubic Partition Pairs

Let b(n) denote the number of overcubic partition pairs of n. In this paper, we establish two Ramanujan type congruences and several infinite families of congruences modulo 3 satisfied by b(n). For modulus 5, we obtain one Ramanujan type congruence and two congruence relations for b(n), from which some strange congruences are derived.

متن کامل

1 4 N ov 2 00 5 Ramanujan ’ s Harmonic Number Expansion

An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number.

متن کامل

N ov 2 00 5 Ramanujan ’ s Harmonic Number Expansion

An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number.

متن کامل

Spectra of signed adjacency matrices

A signed adjacency matrix is a {−1, 0, 1}-matrix A obtained from the adjacency matrix A of a simple graph G by symmetrically replacing some of the 1’s of A by −1’s. Bilu and Linial have conjectured that if G is k-regular, then some A has spectral radius ρ(A) ≤ 2 √ k − 1. If their conjecture were true then, for each fixed k > 2, it would immediately guarantee the existence of infinite families o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008